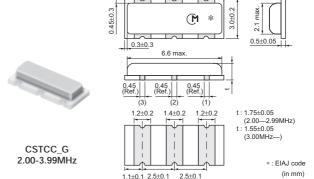
Ceramic Resonators (CERALOCK®)

MHz Chip Type -Standard Frequency Tolerance for General Usage-

Chip type CERALOCK(R) with built-in load capacitors provides an extremely small package.

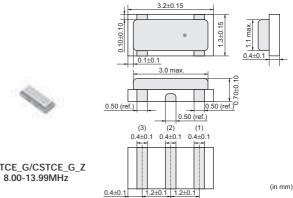
MURATA's package technology expertise has enabled the development of the Chip CERALOCK(R) with built-in load capacitors.

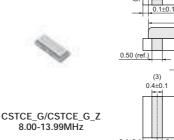

High-density mounting can be realized because of the small package and the elimination of the need for an external load capacitor.

■ Features

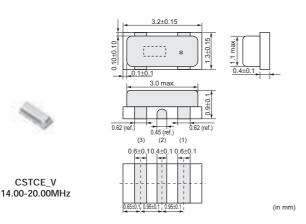

- 1. Oscillation circuits do not require external load capacitors.
- 2. Available in a wide frequency range.
- 3. Extremely small and have a low profile.
- 4. No adjustment is necessary for oscillation circuits.

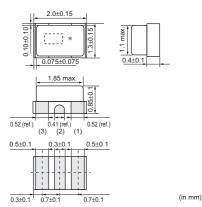
■ Applications


- 1. Clock oscillators for microprocessors
- 2. Small electronic equipment such as handheld phone, digital video camcorder (DVC), digital still camera (DSC), portable audio player, etc.
- 3. Storage media and memory (HDD, Optical storage device, FDD, Flash memory card. etc.)
- 4. Office automation equipment (Mobile PC, Mouse, Keyboard, etc.)
- 5. Audio-visual applications (TV, DVD-HDD recorder, Audio equipment, Remote control, etc.)
- 6. Home appliances (Air conditioner, Microwave oven, Refrigerator, Washing machine, etc.)



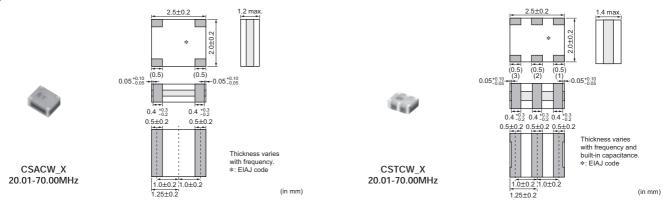
7.2±0.2


4.5±0.



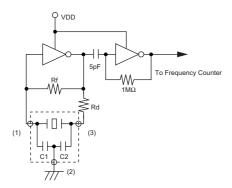
CSTCG_V 20.00-33.86MHz

(Ultra Small)



Continued on the following page.

Ontinued from the preceding page.



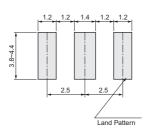
Part Number	Oscillating Frequency (MHz)	Initial Tolerance	Temperature Stability (%)	Temperature Range (°C)
сѕтсс_б	2.00 to 3.99	±0.5%	±0.3 [±0.4%:Built-in Capacitance 47pF type within Freq.2.00 to 3.49MHz]	-20 to 80
CSTCR_G	4.00 to 7.99	±0.5%	±0.2	-20 to 80
CSTCE_G	8.00 to 13.99	±0.5%	±0.2	-20 to 80
CSTCE_G_Z	8.00 to 13.99	±0.5%	±0.2	-40 to 125
CSTCE_V	14.00 to 20.00	±0.5%	±0.3	-20 to 80
сsтсg_v	20.00 to 33.86	±0.5%	±0.3	-20 to 80
CSACW_X	20.01 to 70.00	±0.5%	±0.2	-20 to 80
сѕтсw_х	20.01 to 70.00	±0.5%	±0.2	-20 to 80

Irregular or stop oscillation may occur under unmatched circuit conditions. Please check the actual conditions prior to use.

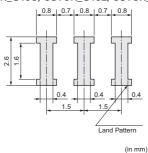
■ Oscillation Frequency Measuring Circuit

CSTCR_G/CSTCE_G/CSTCE_G_Z/CSTCE_V/CSTCG_V

To Frequency Counter

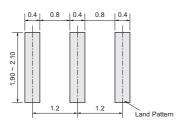

CSTCC_G/CSTCW_X

CSACW_X VDD To Frequency counter Rt CL1 CL2

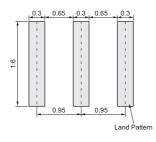


■ Standard Land Pattern Dimensions

CSTCC_G

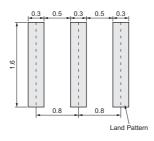


CSTCR_G
(* This Land Pattern is not common to CSTCR_G15C, CSTCR_G15L, CSTCR_GH5L.)

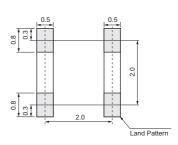


(in mm)

CSTCE_G/CSTCE_G_Z

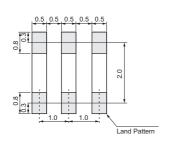


CSTCE_V
(* This Land Pattern is not common to
CSTCE_V13C, CSTCE_V_C, CSTCE_V13L, CSTCE_VH3L.)



(in mm)

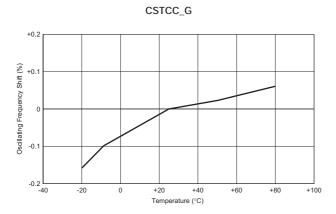
CSTCG_V

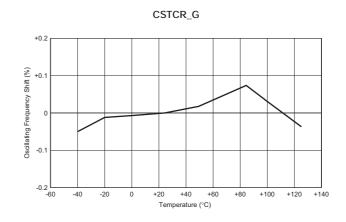


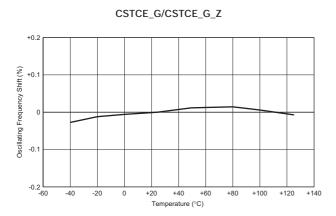
CSACW_X

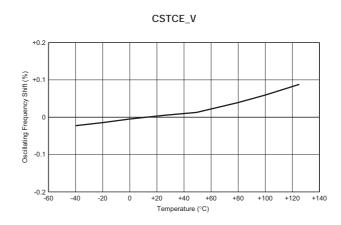
(in mm)

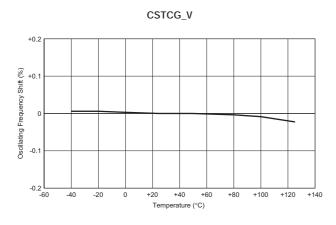
CSTCW_X

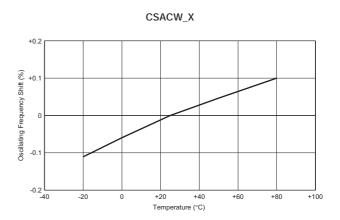


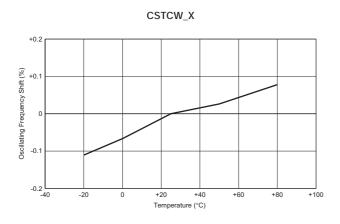

(in mm)

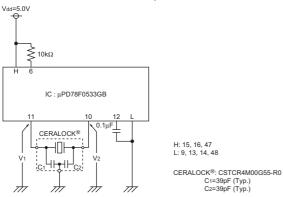

(in mm)



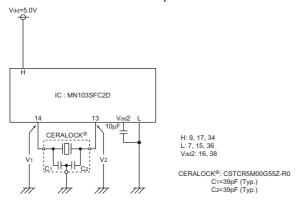

■ Oscillation Frequency Temperature Stability



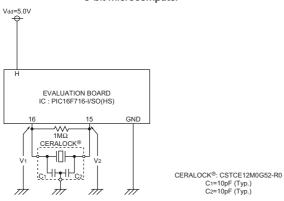


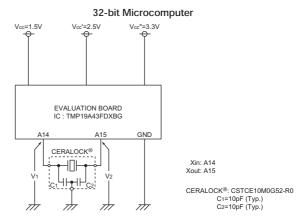


Application Circuits Utilization


■ µPD78F0533GB (Renesas)

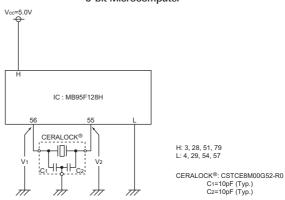
8-bit Microcomputer


■ MN103SFC2D (Panasonic)

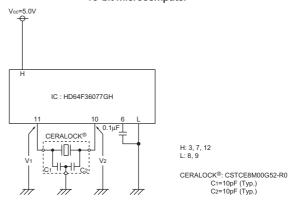


■ PIC16F716-I/SO (Microchip)

8-bit Microcomputer



■ TMP19A43FDXBG (Toshiba)

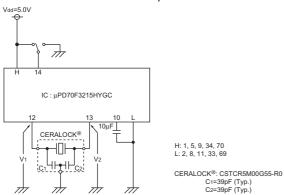

■ MB95F128H (Fujitsu)

8-bit Microcomputer

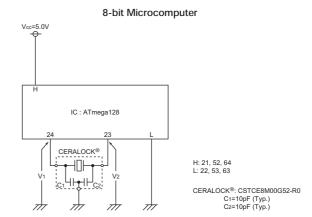
■ HD64F36077GH (Renesas)

16-bit Microcomputer

Continued on the following page.

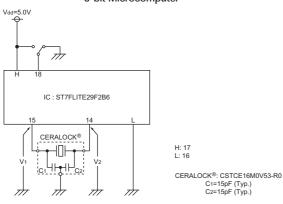


Application Circuits Utilization


Continued from the preceding page.

■ µPD70F3215HYGC (Renesas)

32-bit Microcomputer



■ ATmega128 (Atmel)

■ ST7FLITE29F2B6 (ST Microelectronics)

8-bit Microcomputer

■ TMS320F2810PBKA (Texas Instruments)

H1: 20, 29, 42, 56, 63, 74, 82, 94, 99, 100, 102, 110, 114 H2: 1, 13, 14, 25, 49, 52, 83, 104, 118 L: 12, 15, 17, 26, 30, 39, 53, 59, 62, 73, 88, 95, 103, 109, 115, 117, 128

CERALOCK®: CSTCE15M0V53-R0 C1=15pF (Typ.) C2=15pF (Typ.)