## **Pulsanti**

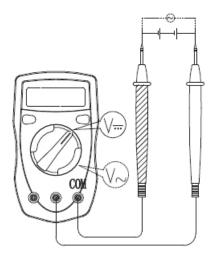
La tabella qui sotto illustra i pulsanti presenti sullo strumento

| Pulsante             | Operazione eseguita                                                                                           |
|----------------------|---------------------------------------------------------------------------------------------------------------|
| Pulsante <b>HOLD</b> | <ul> <li>Premere una volta HOLD per entrare in modalità "Hold"<br/>(memorizzazione)</li> </ul>                |
|                      | <ul> <li>Premere ancora HOLD per uscire dalla modalità "Hold"</li> </ul>                                      |
|                      | <ul> <li>In modalità "Hold", sul display appare il simbolo "H" e il<br/>valore corrente</li> </ul>            |
| Pulsante <b>BLU</b>  | <ul> <li>Premere una volta il pulsante BLU per accendere la<br/>retroilluminazione del display</li> </ul>     |
|                      | <ul> <li>Premere ancora il pulsante BLU per spegnere la<br/>retroilluminazione del display</li> </ul>         |
|                      | <ul> <li>La retroilluminazione NON si spegne automaticamente,<br/>ma solo premendo il pulsante BLU</li> </ul> |

# Operazioni di misura(1)

## A. Misura della tensione CC (vedi figura 2)

## **Avvertimento**


Per evitare lesioni personali causate da scariche elettriche, o danni allo Strumento, anche se è possibile ottenere delle letture, non misurare mai tensioni superiori a 500V

La gamma di tensioni CC è : 200mV, 2000mV, 20V, 200V e 500V. Per misurare la tensione CC :

- 1. Inserire il puntale rosso nel terminale  $\mathbf{V}\Omega\mathbf{m}\mathbf{A}$  e il puntale nero nel terminale  $\mathbf{COM}$
- 2. Ruotare il selettore rotativo su una posizione di misura corretta sulla scala V...
- 3. Collegare i puntali all'oggetto da misurare Il valore misurato apparirà sul display

#### Nota:

- Se il valore della tensione da misurare non è conosciuto, utilizzare la scala di misura più alta (500V) e retrocedere gradualmente fino a raggiungere una lettura soddisfacente.
- Se sul display appare "1", vuol dire che la scala selezionata è troppo bassa; per ottenere una lettura corretta, si deve selezionare una scala maggiore.
- Su ogni scala, lo strumento ha un'impedenza d'ingresso di circa 10MΩ. Questo effetto di carico può provocare degli errori di misura in circuiti con impedenza elevata. Se l'impedenza del circuito è inferiore o uguale a 10kΩ, l'errore è trascurabile (0.1% o inferiore).
- Una volta terminata la misura della tensione CC, scollegare i puntali dal circuito misurato.



# B. Misura della tensione CA (vedi figura 2)

## **Avvertimento**

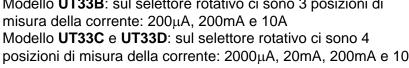
Per evitare lesioni personali causate da scariche elettriche, o danni allo strumento, anche se è possibile ottenere delle letture, non misurare mai tensioni superiori a 500V

Le posizioni di misura della tensione CA sono: 200V e 500V. Per misurare la tensione CA :

- 1. Inserire il puntale rosso nel terminale  $V\Omega mA$  e il puntale nero nel terminale COM
- 2. Ruotare il selettore rotativo su una posizione di misura corretta sulla scala V~
- 3. Collegare i puntali all'oggetto da misurare Il valore misurato che apparirà sul display sarà il valore efficace di un'onda sinusoidale (valore di risposta medio)

#### Nota:

- Se il valore della tensione da misurare non è conosciuto, utilizzare la scala di misura più alta (500V) e retrocedere gradualmente fino a raggiungere una lettura soddisfacente.
- Se sul display appare "1", vuol dire che la scala selezionata è troppo bassa; per ottenere una lettura corretta, si deve selezionare una scala maggiore.
- Su ogni scala, lo strumento ha un'impedenza d'ingresso di circa  $10M\Omega$ . Questo effetto di carico può provocare degli errori di misura in circuiti con impedenza elevata. Se l'impedenza del circuito è inferiore o uguale a  $10k\Omega$ , l'errore è trascurabile (0.1% o inferiore).
- Una volta terminata la misura della tensione CA, scollegare i puntali dal circuito misurato.


## C. Misura della corrente CC (vedi figura 3)

## Avvertimento

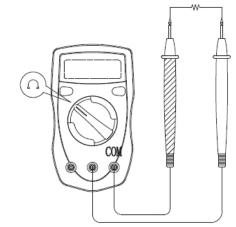
Non effettuare mai misure di corrente in un circuito se la tensione tra i terminali e la messa a terra è superiore a 60V. Se il fusibile brucia durante la misura, lo Strumento potrebbe danneggiarsi e l'operatore potrebbe ferirsi. Utilizzare i terminali, le funzioni e le scale di misura corrette. Quando i puntali sono collegati ai terminali di corrente, non devono mai essere collegati in parallelo in un circuito.

Modello **UT33B**: sul selettore rotativo ci sono 3 posizioni di

posizioni di misura della corrente: 2000µA, 20mA, 200mA e 10A



# Per misurare la corrente:


- 1. Togliere l'alimentazione al circuito. Scaricare tutti i condensatori ad alta tensione
- 2. Inserire il puntale rosso nel terminale  $V\Omega mA$  o 10A e il puntale nero nel terminale COM
- 3. Ruotare il selettore rotativo su una posizione di misura corretta sulla scala A...
- 4. Interrompere il percorso di corrente da testare. Collegare il puntale rosso al polo positivo dell'interruzione e il puntale nero al polo negativo dell'interruzione
- 5. Alimentare il circuito Il valore misurato apparirà sul display

# D. Misura della resistenza (vedi figura 4)

## **Avvertimento**

Per evitare danni allo strumento o al dispositivo da testare, prima di misurare la resistenza, scollegare l'alimentazione e scaricare tutti i condensatori ad alta tensione.

Modello **UT33B/UT33C**: le posizioni per misurare la resistenza sono:  $200\Omega$ ,  $2000\Omega$ ,  $20k\Omega$ ,  $200k\Omega$  e  $20M\Omega$  Modello **UT33D**: le posizioni per misurare la resistenza sono:  $200\Omega$ ,  $2000\Omega$ ,  $20k\Omega$ ,  $200k\Omega$ ,  $20M\Omega$  e  $200M\Omega$ 



#### Per misurare la resistenza:

- 1. Inserire il puntale rosso nel terminale  $V\Omega mA$  e il puntale nero nel terminale COM
- 2. Ruotare il selettore rotativo su una posizione di misura corretta sulla scala  $\Omega$
- 3. Collegare i puntali all'oggetto da misurare Il valore misurato apparirà sul display

#### Nota:

- I puntali possono aggiungere un errore variabile da 0.1Ω a 0.3Ω alla misura della resistenza. Per ottenere delle letture precise quando si misurano basse resistenze (scala 200Ω), cortocircuitare prima i puntali e registrare la lettura ottenuta (definita lettura X); X è la resistenza aggiuntiva dei puntali. Utilizzare poi l'equazione: valore della resistenza misurata (Y) (X) = letture precise della resistenza.
- Nel caso di resistenze elevate (>1MΩ), lo strumento necessita di qualche secondo prima di fornire una lettura stabile.
- Una volta terminata la misura della resistenza, scollegare i puntali dal circuito misurato.

# E. Test diodi e continuità (vedi figura 5)

## **Avvertimento**

Per evitare danni allo strumento o al dispositivo da testare, prima di effettuare la misurazione, scollegare l'alimentazione e scaricare tutti i condensatori ad alta tensione.

Utilizzate il test diodi per misurare diodi, transistor e altri semiconduttori. Il test diodi invia una corrente attraverso la giunzione del semiconduttore e poi misura la caduta di tensione lungo la giunzione. Una buona giunzione in silicio ha una caduta di tensione compresa tra 0.5V e 0.8V.

Per testare un diodo fuori da un circuito:

- 1. Inserire il puntale rosso nel terminale  $V\Omega mA$  e il puntale nero nel terminale COM
- 2. Ruotare il selettore rotativo sulla posizione ---- (modello UT33B) o sulla posizione ---- (modello UT33C/UT33D)
- 3. Per misurare il valore della caduta di tensione diretta del diodo collegare il puntale rosso all'anodo del componente e il puntale nero al catodo del componente. Il valore misurato apparirà sul display.

#### Nota:

- In un circuito, un buon diodo dovrebbe dare una lettura della caduta di tensione diretta tra 0.5V e 0.8V; tuttavia, la lettura della caduta di tensione inversa può variare secondo la resistenza di altri passaggi tra i puntali.
- Per evitare errori di lettura, collegare i puntali negli appositi terminali. Il display mostrerà "1" per indicare un circuito aperto per errato collegamento. L'unità di misura del diodo è il Volt (V) che indica il valore di caduta di tensione del collegamento positivo.
- Una volta terminato il test diodi, scollegare i puntali dal circuito misurato.

## Modello UT33C/UT33D: Test di continuità

Per testare la continuità:

- 1. Inserire il puntale rosso nel terminale  $V\Omega mA$  e il puntale nero nel terminale COM
- 2. Ruotare il selettore rotativo sulla posizione ----
- 3. Collegare i puntali all'oggetto da testare

L'indicatore sonoro emette un suono se il valore della resistenza del circuito testato è inferiore a  $70\Omega$ .

## Nota:

• Sul display appare "1" per indicare che il circuito da testare è aperto.

# H. Modello UT33D: Onda quadra in uscita

## **Avvertimento**

Per evitare danni allo Strumento, i terminali d'uscita (puntali rossi) non devono superare i 10A.

Per misurare un'onda quadra in uscita:

- 1. Ruotare il selettore rotativo su ---- OUT
- 2. Tra i terminali  $\mathbf{V}\Omega \mathbf{m}\mathbf{A}$  e  $\mathbf{COM}$  viene emesso un segnale in uscita ad onda quadra

## Nota:

- La frequenza è circa 50Hz
- Ampiezza d'uscita superiore a 3Vpp con carico a 1MΩ.